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Spectral vanishing viscosity method for LES: sensitivity
to the SVV control parameters
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Where spectral methods are concerned, the spectral vanishing viscosity (SVV) method offers an inter-
esting way of computing high Reynolds number flows since it allows stabilization of the calculations
whilst preserving the exponential rate of convergence of the spectral approximation. Here we first
show how to implement the SVV method in an existing Navier–Stokes solver and then investigate the
sensitivity of the numerical results to its main characteristic parameters, namely the SVV amplitude
and the SVV activation mode, by focusing on the computation of a turbulent wake in a cylinder,
embedded in a channel-like domain, at Reynolds number Re = 3900.

Keywords: Spectral methods; Spectral vanishing viscosity; Large eddy simulation; Cylinder wake

1. Introduction

The computation of turbulent flows remains an attractive and challenging task not only in
various applications, e.g. in engineering flows, geophysical flows, but also for a good under-
standing of turbulence. The large eddy simulation (LES) approach, largely developed over
the last two decades, constitutes a valuable way to compute such flows, especially if a direct
numerical simulation (DNS) approach would be too expensive or if the Reynolds-averaged
Navier–Stokes (RANS) approach would not be sufficiently accurate.

To simulate only the coherent structures of a flow, the LES approach makes use of a
modelling of the so-called sub grid scale (SGS) stress tensor (see e.g. [1–3]). It is then of
interest to use high-order methods, especially spectral methods, to avoid any mixing of the
SGS modelling contribution and numerical approximation errors, which may be of comparable
amplitude as emphasized, for example, in [4, 5]. In these papers, where detailed analyses are
provided to separate the modelling and discretization errors, a grid-independent LES is set by
increasing the ‘resolution ratio’ �/h (�, filter width; h, space step size) but, of course, for
given � a strongly decreasing h results in a dramatic increase in computational cost. Efficient
spectral methods then appear interesting even if low-order methods can in fact take benefit
from counteractions between the modelling and discretization errors [6].

To achieve a spectral LES, one can associate an efficient approximation of the SGS tensor
and a stabilization technique. In this spirit we have proposed combining an approximate
deconvolution method (ADM) [7, 8] (see also [9, 10]) with the spectral vanishing viscosity
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(SVV) method [11, 12]. In the frame of a semi-Lagrangian scheme this has lead us to develop
a defiltering–transport–filtering (DTF-SVV) algorithm [13]. The stabilization property of the
SVV method results from the introduction of an additional viscous term in the Navier–Stokes
equations. Without such an additional term, energy accumulates at the higher frequencies
until inducing a divergence of the calculation. However, because it only acts in the high-
frequency range, the SVV term allows preservation of the so-called spectral accuracy of
spectral methods, i.e. the exponential rate of convergence of the numerical approximation
towards the exact solution.

More recently we have made some comparisons between DTF-SVV and SVV results for
the turbulent wake of a cylinder inside a channel [14]. It appears that the results obtained
when using the SVV method alone were already valuable and may even be superior to those
obtained when DTF modelling of the SGS tensor was attempted. One may then ask if a
SVV-stabilized DNS (say SVV-LES) could not result in a realistic LES. Such an approach
was used for the first time in [15], where a SVV-LES was introduced and applied to the
spectral element computation of turbulent channel flows. The formulation of the SVV term
was, however, different from ours. Similarly, in this paper we restrict ourselves to the SVV
method. A sensitivity study to its control parameters is provided for the turbulent wake of
a cylinder. Moreover, some comparisons with the experimental data used in [16, 17], and
especially from [18], are also presented.

The paper is organized as follows. In Section 2 we describe the wake flow problem in
which we are interested, give some basic elements on the SVV method and then show how
the SVV method is implemented in the numerical solver. In Section 3 we focus on a classical
benchmark: the wake of a cylinder at Reynolds number Re = 3900, as, e.g., in [16, 17, 19],
except that our flow is confined in the cross-flow direction. It is satisfying to observe that the
dependence on the SVV parameters is rather weak, except in the very near wake, especially
when looking at the mean recirculation length behind the cylinder. Moreover, comparisons
with the experimental data indicate that the present SVV-LES could constitute a valuable
no-SGS model LES approach. Section 4 concludes the paper.

2. Wake flow problem and SVV-stabilized spectral solver

We are interested in the computation of wakes behind obstacles embedded in channel-like
geometries. The x-, y- and z-axes correspond to the streamwise, cross-flow and spanwise
directions, respectively. The z-direction is assumed homogeneous. The flow is governed by
the incompressible Navier–Stokes equations:

Dt u = −∇ p + 1

Re
�u (1)

∇ · u = 0 (2)

where u is the velocity, p a pressure term, Re the Reynolds number and Dt = ∂t +u · ∇ stands
for the material derivative.

The main characteristics of the spectral method used to solve this set of equations are as
follows (see [14, 20] for more details).

� In time, the scheme is globally of second order and makes use of three steps:

(i) an explicit transport step, handled with an OIF (operator integration factor) semi-
Lagrangian method [21, 22];

(ii) an implicit diffusion step;
(iii) a projection step, based on an unique grid ‘PN − PN−2’ approximation.
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� The approximation in space makes use of:

(i) a domain decomposition in the streamwise x-direction with non-overlapping subdo-
mains and conforming meshes;

(ii) Fourier expansions in the homogeneous spanwise z-direction;
(iii) Chebyshev polynomial expansions in x and y (collocation method).

� The bluff body is modelled by using a ‘smoothed penalty technique’: a force term is intro-
duced into the Navier–Stokes equations to cancel (approximatively) the velocity field inside
the obstacle whose ‘characteristic function’ is smoothed.

� Parallelization/vectorization: each subdomain is associated to one vectorial processor.

2.1 The SVV method: background

The SVV method was introduced in the late 1980s to solve non-linear scalar 1D hyperbolic
problems with spectral methods. Fourier expansions were used in the periodic case, inves-
tigated in [11], whereas Legendre expansions were used in non-periodic geometries [12].
Further refinements were later carried out (see, e.g., [23, 24]). The main goal of the SVV
method is to provide a stable scheme while preserving spectral accuracy, i.e. the exponen-
tial rate of convergence of the numerical solution towards the exact solution or, in the case
of non-continuous functions, towards its fully converged spectral approximation. The SVV
method relies on the idea of adding some artificial viscosity only at the highest frequencies,
thus allowing preservation of spectral accuracy.

We introduce the SVV method by following the work of [12], i.e. we consider the non-linear
1D scalar conservation law:

∂t u + ∂x ( f (u)) = 0 in R
+ × (−1, 1) (3)

where f (u) is a non-linear function (e.g. for the Burgers equation f (u) = u2/2) and look for
a polynomial approximation uN (·, t) ∈ PN (−1, 1) (set of polynomials of maximum degree N
defined in (−1, 1)) of u(·, t), solving in some sense the semi-discrete equation:

∂t uN + ∂x IN ( f (uN )) = εN ∂x (QN (∂x uN )) (4)

Here IN denotes the polynomial interpolation onto PN , εN is a O(1/N ) coefficient and QN is
the spectral viscosity operator such that, with Lk denoting the Legendre polynomial of degree
k:

∀φ φ =
∞∑

k=0

φ̂k Lk QN φ ≡
N∑

k=0

Q̂k φ̂k Lk (5)

where Q̂k = 0 if k ≤ m N and 0 < Q̂k ≤ 1 if m N < k ≤ N with, e.g., m N = √
N .

The characteristic parameters of the SVV methods are thus the spectral viscosity activation
mode m N and the spectral viscosity amplitude εN . Note that if l is a characteristic length of
the grid, from a scaling argument εN = O(l/2N ). For the variations of Q̂k with respect to the
mode number k, as in [12] we use: Q̂k = exp[−((N − k)/(m N − k))2], m N < k ≤ N . The
variations of Q̂k for three values of m N are shown in figure 1.

2.2 Implementation

The SVV method is implemented in the implicit diffusion step [14, 20]. At this stage we
introduce a SVV-modified Laplacean operator �SVV, which combines the viscous term and
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Figure 1. Variations of Q̂k for N = 100 and m N = {√N , 0.3N , 0.6N }.

the SVV term. Thus, with a second-order backward Euler approximation of the material
derivative and a time-step �t , the following semi-discrete problem is considered at each time
tn+1.

Determine u∗ such that: (
ν�SVV − 3

2�t

)
u∗ = f n+1 in � (6)

+ boundary condition, e.g. u∗|� = un+1|� = u�

with (semi-Lagrangian method and ‘Goda scheme’ [25]):

f n+1 = 1

2�t
(−4ũn + ũn−1) + ∇ pn (7)

Here u∗ is a provisional (non-solenoidal) velocity and ũn+1−q , 1 ≤ q ≤ 2, are the velocity at
time tn+1−q and at the feet of the characteristics stemming from (x, tn+1), in practice at the
grid points after space discretization.

To go into the details, let us consider the following scalar elliptic equation:

−ν�u + α0u = f in (−1, 1)2, 0 < ν 
 1, α0 ≥ 0 (8)

The discrete SVV solution uN should solve, e.g., in the sense of collocation methods:

−ν�uN + α0uN = fN + ∇ · εN QN (∇uN ) (9)

where one has still to define the term εN QN (∇uN ).
The definition we propose relies on the use of the SVV operator introduced in the 1D case.

With N1 (resp. N2) the polynomial approximation degree in x (resp. y), it is:

εN QN (∇uN ) ≡ [
εN1 Q1

N1
(∂x uN ), εN2 Q2

N2
(∂yuN )

]
(10)

with Qi
Ni

the 1D SVV operator acting in direction i . With such a definition of the operator
QN , artificial dissipation is effectively provided when required, as discussed in [26]. For more
or less different definitions of the spectral viscosity operator in the multidimensional case see
[15, 23, 27].

Combining the viscous and SVV terms yields the �SVV operator:

�SVV ≡ ∇ ·
(

1 + εN

ν
QN

)
∇ (11)
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Figure 2. Convergence results for different SVV parameters (m N , εN ) and also without SVV and with a O(N−1)
viscous term.

In order to check that the spectral accuracy is preserved, we show in figure 2 some convergence
results towards the exact solution: uexact = tanh 30(x2+y2−0.252), when solving the previous
elliptic equation with ν = 1/900, α0 = 1 and the appropriate source term. Clearly, introducing
a SVV term deteriorates the precision, the best result being obtained without a SVV term.
However, the convergence remains exponential and the convergence rate depends on the
values of m N and εN . Of course, simply adding a O(N−1) viscous term only yields a first-
order algebraic convergence. Note that the present results were obtained with a Chebyshev
collocation method, so that the Chebyshev spectrum was substituted for the Legendre one in
the definition of the 1D operator.

The extension to the 3D case with one homogeneous direction is straightforward. For the
spanwise z-direction, the 1D SVV operator is defined as in [11] by its action on the Fourier
spectrum.

3. LES of the turbulent wake of a cylinder

The characteristic parameters of the computation are the following.

� Reynolds number: Re = 3900. The cylinder diameter, the inlet velocity and the ratio of both
of them are used for reference length, velocity and time, respectively.

� Computational domain: � = (−6.5, 17.5) × (−4, 4) × (−2, 2). The cylinder is of unit
diameter and centred at x = y = 0.

� Initial conditions: the fluid is at rest (u0 = 0).
� Boundary conditions: free-slip conditions at y = ±4, unit velocity at x = −6.5 (inlet) and

‘advection’ at the mean flow velocity at x = 17.5 (outlet).
� Mesh: number of subdomains: S = 5, the interfaces of the subdomains are located at x =
{−0.5, 2.5, 6.5, 11.5}; polynomial approximation degrees in each subdomain: N1 = 60,
N2 = 120 in x- and y-directions, respectively; number of Fourier grid points: NF = 60.

Firstly, it should be mentioned that depending on the values of the SVV parameters, the
numerical scheme may be unstable. We have not carried out an extensive study but verified
that numerical instabilities occur if:

m N ≥ 0.7N when εN = 1/N
εN ≤ N/10 when m N = √

N
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Also, it is of interest to mention that a computation was carried out with the much higher
Reynolds number Re = 140 000, using m N = √

N and εN = 1/N . The computation was
stable but the mesh seems too coarse or the SVV term too high (with these values of
m N and εN ) to obtain relevant results. They indeed appear to become independent of the
Reynolds number, which is meaningful of the fact that the viscous term becomes negligi-
ble with respect to the SVV term. Such a problem also arises in standard LESs, when the
SGS contribution is too dominant or, say, when the ‘subgrid activity parameter’ [4, 5] is too
high.

The sensitivity to SVV parameters is now addressed. Some comparisons with experimental
results are also provided to outline the validity of our numerical results. However, it should
be noted that our simulations were carried out in a cross-flow confined geometry and not in
the quasi-open domain of the experiments. To study the sensitivity of the numerical results
to m N and εN , simulations were carried out for εN = 1/N , m N = {√N , N/3, N/2, 0.6N }
and for m N = √

N , εN = {1/N , 1/4N , 4/N }. The flow statistics were computed for t ∈
(100, 250), i.e. during 150 time units from a state where the turbulent flow is well
established.

Some qualitative results are presented in figure 3, where isolines of the instantaneous
spanwise vorticity in the plane z = 0 and at time t = 150 are shown. As could be expected,
when m N is increased finer structures are present. On the contrary, when εN is increased a

Figure 3. Isolines of the spanwise vorticity in the plane z = 0 for (a) m N = √
N , εN = 1/N (b) m N = N/2, εN =

1/N and (c) m N = √
N , εN = 4/N . The visualizations use 30 isolines equidistributed in (−22, 22).
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smoothing effect can be observed. The extrema are also slightly different:

if m N =
√

N , εN = 1/N , then − 27.50 < ωz < 22.58

if m N = N/2, εN = 1/N , then − 31.69 < ωz < 30.82

if m N =
√

N , εN = 4/N , then − 19.69 < ωz < 21.64

Thanks to the amplification effect of the vorticity one can thus observe some differences in
the computed flows: when the SVV term is decreased the flow shows finer vortical structures.

Figure 4 shows the variations of the streamwise, cross-flow and spanwise components of
the velocity at a point downstream of the cylinder, in the ‘far wake’. One can observe the
influence of a variation in m N (on the left) and the influence of a variation in εN (on the
right). Such history plots may be analysed by providing histograms, i.e. after normalization,
estimates of probability density functions (PDFs). Such PDFs are shown in figure 5 for three
different values of m N , with εN = 1/N , and three different values of εN , with m N = √

N .

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 200  205  210  215  220  225  230  235  240  245  250

u x u x

Time, t

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 200  205  210  215  220  225  230  235  240  245  250

Time, t

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 200  205  210  215  220  225  230  235  240  245  250

u y u y

Time, t

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 200  205  210  215  220  225  230  235  240  245  250

Time, t

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 200  205  210  215  220  225  230  235  240  245  250

u z u z

Time, t

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 200  205  210  215  220  225  230  235  240  245  250

Time, t

m = √N
m = N/2

m = √N
m = N/2

m = √N
m = N/2

ε = 1/4N
ε = 4/N

ε = 1/4N
ε = 4/N

ε = 1/4N
ε = 4/N

Figure 4. History plots of ux , uy and uz at P(12.54, 0, 0): m N = {√N , N/2}, εN = 1/N (left); m N = √
N , εN =

{1/4N , 4/N } (right).
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Figure 5. Probability density function of ux , uy and uz at P(12.54, 0, 0): m N = {√N , 0.3N , 0.6N }, εN = 1/N
(left); m N = √

N , εN = {1/N , 1/4N , 4/N } (right).

Although 150 time units were used to compute these PDFs, the time integration appears to
be too short, some symmetry properties being still approximative. However, such figures do
not show a strong influence of the SVV parameters m N and εN .

Via the Taylor hypothesis, the power spectra corresponding to the history plots of figure 4
should be in agreement with Kolmogorov theory (‘K41’), i.e. they should show the character-
istic k−5/3 slope in the inertial range. These power spectra are plotted in figure 6 and compared
to the expected slope. To better appreciate the agreement with K41 theory, a standard smooth-
ing based on three frequencies was used. Despite the fact that no SGS tensor modelling is
implemented here, one can observe rather good agreement with the K41 theory in about half a
decade, as in [16, 17]. Moreover, the sensitivity to the SVV parameters appears weak, although
visible in the higher frequency range, which confirms the qualitative observation of the vortic-
ity fields: when decreasing the SVV term amplitude, by increasing m N or decreasing εN , one
increases the high-frequency content of the power spectra. The Strouhal number, characteristic
of the vortex shedding phenomenon, is clearly indicated by the cross-flow component of the
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Figure 6. Power spectra of ux , uy and uz at P(12.54, 0, 0): m N = {√N , N/2}, εN = 1/N (left); m N = √
N , εN =

{1/4N , 4/N } (right).

velocity: as expected we find St ≈ 0.2. The present results are only weakly dependent of the
choice of the ‘measurement point’ as long as this point is located in the fully turbulent part of
the wake.

It is also of interest to provide some statistics. Figure 7 shows the mean streamwise velocity
〈ux 〉, the Reynolds shear stresses 〈u′2

x 〉 and 〈u′
x u′

y〉 at x = 7.36 (where the prime denotes ‘de-
viation’). Comparisons are provided with the experiments of Ong and Wallace [18]. Although
the statistics are not yet well converged for the computations (no averaging in the z-direction,
contrary to [16, 17], one can observe some striking similarities with the experimental data, but
also some obvious gaps. One can guess that these gaps result from confinement of the simulated
flow in the cross-flow direction. This is clear concerning the variation of 〈ux 〉. Concerning the
Reynolds shear stresses, an increase could be expected from the cross-flow confinement, but
it would be premature to draw a definitive conclusion. Although the Reynolds shear stresses
are not yet converged, as shown by the lack of symmetry of the curves, sensitivity to the SVV
parameter values appears again rather weak.
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Figure 7. Statistics at x = 7.36 (z = 0). (a) Mean profile 〈ux 〉, (b) Reynolds shear stresses 〈u′2
x 〉 and (c) 〈u′

x u′
y〉

for m N = {√N , N/3, 0.6N }, εN = 1/N (left) and m N = √
N , εN = {1/N , 1/4N , 4/N } (right).

However, this weak dependence on the SVV parameters is no longer true in the very near
wake, as shown in figure 8 where 〈ux 〉 and 〈u′2

x 〉 along the y = z = 0 axis are plotted. In
particular, the recirculation length behind the cylinder appears sensitive to the SVV parameter
values. Clearly, decreasing m N or increasing εN , i.e. in both cases increasing the SVV term,
results in an increase of the recirculation length. In fact, we note here that the recirculation
length is difficult to determine correctly because of its strong dependence on the numerical
scheme, on the SGS tensor modelling, on the spanwise length, etc. yielding too low or too high
values with respect to the experiments (see e.g. [28]). For the SVV parameters that we have
used, the recirculation zone is in our case longer than expected. Moreover, a DTF modelling
of the SGS tensor does not improve the situation, as observed in [14]. A possible explanation
may still arise here from the cross-flow confinement of the flow. However, as emphasized
in [17] there are also great discrepancies of the experimental results in the very near wake,
with high sensitivity to upstream disturbances or to the aspect ratio (length/diameter of the
cylinder).
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Figure 8. Statistics along y = z = 0. Mean profile 〈ux 〉 and Reynolds shear stress 〈u′2
x 〉 in streamwise direction:

m N = {√N , N/3, 0.6N }, εN = 1/N (left); m N = √
N , εN = {1/N , 1/4N , 4/N } (right).

Figure 9 compares the numerical result computed for m N = 0.6N and εN = 1/N with the
experimental results of Govardhan and Williamson [29] and Lourenco and Shih [30]. Clearly,
the flow regimes obtained in the experiments differ, with a smooth or on the contrary a stiff
variation of 〈ux 〉 immediately behind the cylinder. In [17] it is suggested that these differences
may result from the different values of the aspect ratio, 10 for Govardhan and Williamson and
20.5 for Lourenco and Shih, but various other experimental details could also explain such a
difference (C.H.K. Williamson, private communication). The flow that we have computed is
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Figure 9. Mean variations of ux in the streamwise direction. Numerical result obtained with m N = 0.6N and
εN = 1/N (solid line); data of Lourenco and Shih [30] (green crosses); data of Govardhan and Williamson [29] (blue
crosses).
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N and εN = 1/N .

close to the experiments of Govardhan and Williamson. On the contrary, the numerical results
in [16, 17] are close to the experiments of Lourenco and Shih.

One may ask if the flow regime that we obtained results from some other numerical parame-
ters, e.g. those characteristic of the computational grid. In particular, since a penalty technique
was used to model the cylinder, the mesh should be fine enough to describe its boundary
correctly. Moreover, we used a ‘smoothed’ penalty technique: in order to weaken the Gibbs
phenomenon the characteristic function of the bluff body is regularized. To check if a different
flow regime would be obtained with a refined mesh, we made computations with polynomial
approximations different from the one used up to now (N1 = 60, N2 = 120, NF = 60). A
computation was thus done with N1 = 90 and another one with N2 = 180, till the final time
t = 150 (rather than t = 250). A calculation was also done with the basic mesh but without
regularization of the characteristic function, till the final time t = 200. One can observe in
figure 10 slight differences in the results, especially for N2 = 180, but these mean profiles are
not yet well converged since they were computed on only 50 or 100 time units. In all cases
the flow regime is preserved.

4. Conclusion

Where spectral methods are concerned, the SVV stabilization technique appears to be of
interest for the LES of turbulent flows. In this spirit a pioneering work was proposed in [15].
The main property of spectral methods is indeed retained: if the exact solution is smooth, the
convergence rate of the numerical approximation towards this exact solution is not algebraic,
but exponential. Moreover, the SVV method can be implemented in a spectral element solver,
opening a way to spectral LES in complex geometries [26].

Using a SVV-stabilized spectral Navier–Stokes solver, we have computed the wake of a
cylinder in a channel-like geometry at Reynolds number Re = 3900. The Strouhal number was
correctly obtained and the power spectra show a good agreement with Kolmogorov theory,
decaying at the expected k−5/3 slope. Mean profiles of the streamwise component of the
velocity and Reynolds shear stresses have also been provided. Such profiles are satisfactory in
the far wake but worse in the near wake, the recirculation length behind the cylinder depending
on the SVV tuning parameter values. This is, however, not really surprising, when taking into
account the large dispersion of the numerical or experimental results.
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Because the SVV method does not rely on physical arguments, a priori the SVV-LES only
constitutes an efficient underlying platform above which a relevant SGS model should be
added. This was our initial motivation [13, 14]. However, in the present state-of-the-art of
SGS modelling for inhomogeneous and anisotropic flows, the SVV-LES methodology may
also be viewed as an interesting no-SGS model spectral LES approach. A nice property is
then that DNS results are easily recovered for laminar flows, contrarily to some classical LES
techniques. Furthermore, for some academic (and very smooth) flows, SVV-LES results may
be more accurate than DNS results, as pointed out in [15, 26] for the ‘Kovasznay flow’. Also, the
problem of commutation errors between the differentiation and filtering operators no longer
arises. Note that the SVV-LES should not be classified as a MILES (monotone integrated
large eddy simulation) approach [31]. As the SVV dissipation is explicit it is, e.g., possible to
separate the viscous and SVV components of the dissipation rate of turbulent kinetic energy,
just as one can separate the viscous and SGS contributions in classical LESs. Some links
may be rather found with the multiscale formulation of LES, on the grounds of non-linear
Galerkin methods [32], as, for example, described for a Fourier spectral approximation in
[33]. Especially, if the ‘small scale SGS model’ is simply regarded as an ad hoc stabilization
term, then the analogy is fulfilled. However, in the two-scale formulation there are really two
different sets of equations, corresponding to the low and high wavenumbers. This is not the
case in the SVV formulation which handles much more smoothly the high-frequency range
(see figure 1).

Choosing ‘optimal values’ of the SVV parameters is not a trivial task, but may be much
easier than with the classical LES, since here the aim is not to adjust the parameters of a
SGS model. Our best results have been obtained for the largest values of m N and the smallest
values of εN , the recirculation bubble then being shorter. This is not surprising: bearing in
mind that the SVV term was only introduced to stabilize the numerical scheme, it is reasonable
to simply minimize its amplitude. Choosing a rather large value of m N , say m N = N/2, and
εN small, from numerical stability considerations, is from our point of view a good strategy.
Moreover, in some specific cases it is also possible to use a strongly anisotropic SVV term,
e.g. by activating only some of its components. A dynamic procedure is also possible, but at
the price of a higher computational cost, which is presently the same as for a DNS.
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